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Abstract

 Geometric and crystallographic observations from two
orthogonal sections through a polycrystal were used as an
input to the computer simulations to create a statistically
representative three dimensional model. The microstructure is
generated using a voxel-based tessellation technique.
Assignment of orientations to the grains is done such that
nearest neighbor relationships match the observed
distributions. The microstructures thus obtained are allowed to
evolve using a Monte-Carlo simulation. Anisotropic grain
boundary properties are used in the simulations. Texture
changes were observed during recrystallization in both
experiments and in the corresponding simulations.
Preliminary results demonstrate that the final texture has a
strong dependence upon the nucleation scheme discussed in
the paper. The good agreement between experiment and
simulation obtained suggests that the assumptions about grain
boundary anisotropy and nucleus placement were reasonable.

Introduction

In the present paper, methods are described to create
statistically relevant three-dimensional model microstructures
from spatially resolved orientation measurements on
orthogonal section planes and to simulate the subsequent
evolution of the microstructure during recrystallization. The
objective of the work is to devise a model of microstructural
evolution that is validated by direct comparison to
experimental recrystallization data and will therefore have
predictive capability.  The methods are demonstrated using
data collected from a rolled polycrystalline aluminum sample.
The representation of the grain geometries is obtained in terms
of a distribution of ellipsoids. The microstructure
crystallography is described by assignment of orientations to
the grains in the geometrically representative microstructure.
Monte-Carlo simulations are subsequently performed for
simulation of grain growth and recrystallization. The effect of
different nucleation schemes on texture evolution is
investigated. Significant growth of the cube component,
{001}<100> is observed which appears to be dependent on

both the grain boundary anisotropy and on the heterogeneous
spatial distribution of nuclei.
       Observations from polycrystalline aluminum are used for
generating microstructural models. Orientation maps were
obtained on two orthogonal observation planes using electron back
scattering diffraction (EBSD). These are used as inputs the
microstructure builder. Figure 1 shows the experimental geometry
arranged such that the sample axis e1 is aligned parallel to the
rolling direction, sample axis e2 is parallel to the transverse
direction and the sample axis e3 is parallel to the normal direction.

Figure 1: Schematic representation of experimental geometry.

Microstructure Generation

     Ellipsoid Distribution:
     A distribution of ellipsoids was used to represent grains in the
polycrystalline microstructure that describe both the variations in
grain size and aspect ratio. The main assumption here is that every
grain can be approximated by ellipsoids. This assumption is
justified by the geometry of the observed grains in the
polycrystalline aluminum material. In addition to this, two more
assumptions are made. The first one is that the distribution of
ellipsoids is independent of position in the sample. That is there is
no gradient in the grain size or morphology through the sample.
Second assumption is that there is no variation in the orientation of
the ellipsoids. Thus, to represent the distribution of grain sizes and
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shapes in the aluminum sample, we need only specify a
spatially homogeneous distribution of ellipsoids, f(a b c), as
the probability density of finding a grain that can be
represented as an ellipsoid with semi-axis lengths a, b, and c
aligned with a fixed sample coordinate system. Though a
single orientation map is incapable of providing full
information about f(a b c). The full form of probability
distribution f(a b c) can be obtained using the orientation maps
of orthogonal cross section of the sample[1].
     Geometry generation
     Once the shape distribution f(a b c) has been obtained the
simulation domain is populated with a collection of
overlapping ellipsoids by placing them randomly inside the
selected model microstructure. This is achieved by selecting a
site at random inside the bounding box as the center of the
ellipsoid. Next step is to decide the lengths of the semi-axes of
the ellipsoid using the distribution f(a b c). Out of this large
set of overlapping ellipsoids, a small subset of optimal
ellipsoids is picked such that each volume element is
contained within one and only one ellipsoid. The procedure
for selecting optimal packing is done using “simulated
annealing” [2]. The procedure described above provides a set
of ellipsoids to represent the grains in the final microstructure;
however, these ellipsoids overlap in certain areas and do not
fill space at other locations.

Figure2: Three dimensional geometry of the model
microstructure.  Grain shades were randomly assigned

     The last step in generating the microstructure is to fill the
space with grains that have the underlying ellipsoid
distribution. First the space is sampled with a random sample
of points. Then the space is tessellated using the Voronoi
tessellation scheme [3]. The result of this scheme is a set of
Voronoi cells. Each Voronoi cell is a volume enclosed by the
perpendicular bisectors planes between adjacent points. Once
this is completed the Voronoi cells grouped into grains. This
is done by associating the cells with the ellipsoid containing it.
If the cell lies in more than one ellipsoid it is associated with

the ellipsoid whose center is closest. This procedure ensures that a
microstructure filling all the space and having no overlap is
obtained. No overlap occurs since care is taken to assign the
voronoi cells to one and only one grain.
     Fig. 2 shows the typical three-dimensional model
microstructure generated based on the observations of the
deformed aluminum 1050 alloy. On closer inspection one can see
the coarser grains and also some smaller grains which are the
nuclei introduced during the process of nucleation. Although
aesthetic agreement between the model and the experimental
observations is important, it is vital to compare the measured
distributions of ellipsoids that served as the basis for the model to
those obtained from the microstructure.

Microstructure Crystallography

     The next step in the microstructure builder is the assignment of
orientations to the grains in the model so as to match the
microstructure of experimental aluminum polycrystal. Here the
assumption is that the arrangement of grain orientations in a
polycrystalline microstructure can be sufficiently characterized by
specifying a combination of the distribution of grain orientations
by volume fraction f(g) and the distribution of relative
misorientations across grain boundaries by area fraction f(Dg).  f(g)
and f(Dg) are determined for the polycrystalline aluminum sample
based on the geometric and crystallographic information from the
orientation maps.  For f(g), this is accomplished by binning each
orientation observation into the appropriate category of g. f(Dg) is
calculated in a similar fashion, except that, instead of counting the
orientation observations, the misorientation associated with each
pair of adjacent points that span a grain boundary is binned into
the appropriate misorientation category.
     After specifying f(g) and f(_g), orientations are assigned to the
grains in the model microstructure such that their distribution and
arrangement matches both distributions using an iterative
technique. The target f(g) and f(Dg) derived from the aluminum
polycrystal, along with the topology data from the model
microstructure, are the only pieces of information required for the
orientation assignment algorithm.  The algorithm is based on the
work of Miodownik et al. [4] and uses a simulated annealing
algorithm [2] to find an optimum configuration of orientations.
Briefly, random orientations, g, are assigned to all of the grains in
the model microstructure.  Next, f(g) and f(Dg) are calculated and
compared to their target values.  An error value for the system (l)
is calculated,
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where i sums over the orientation categories, j sums over the
misorientation categories, and e and m signify experimental and
model distributions, respectively.   The algorithm proceeds by
randomly choosing between two operations, an orientation change
or an orientation swap, until the error value, _, is minimized.

Monte Carlo Simulation



     Monte Carlo models are commonly used to describe grain
growth and recrystallization [4-6]. In particular the Potts
model was used in the simulations. The Potts model is flexible
in terms of adjusting input parameters like energy and
mobility and also it is computationally straightforward. The
approach is briefly discussed here. Each lattice site in the
microstructure, in from of a regular grid, generated by above
described method, is given an index s i based on the
orientation. i.e. all the sites in the same grain have the same
index (and also same orientation). The grain boundaries
between different orientations have an excess energy,
depending upon the misorientation between them, given by
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where the sums are over all the neighbor sites, n in total, of
the site i and for all the N  sites. For a pure isotropic grain

growth ),( ji ssH  = E 0, a constant, and for only curvature

driven grain growth F (si) = 0.
     New grains, or nuclei are introduced in to the
microstructure at time, t = 0. The nucleation scheme used is
discussed in detail in the next section.

Grain growth is carried out using Monte Carlo
technique. It proceeds in the following way (i) lattice site is
chosen at random (ii) a candidate index from the list  of the
neighboring indices is selected (iii) The change in system
energy is calculated by using equation (2). (iv) The flip is
performed with a probability P (_E) given by
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and M(gi,gj) = _(gi,gj)_(gi,gj)  is the reduced mobility of that
boundary between grains i and j where _(gi,gj) is the intrinsic
mobility of that boundary and Mm  is the maximum reduced
mobility in the system. Thus an index flip is accepted with a
probability proportional to the normalized boundary mobility.
     Figure 3 shows a typical simulation result of a
recrystallization/grain growth simulation using the procedure
described above. In Fig. 3(a) the original grain structure
(coarser grains) is depicted along with the recrystallized nuclei
introduced in the microstructure. By 1000 MCS, Fig. 3(b) the
recrystallized nuclei are completely dominating.
Recrystallization is almost completed at this point as the
volume fraction of the recrystallized grains (sites) is about
0.95. In Fig. 3(c) it can be seen that the recrystallized grains
are growing. Fig. 3(d) depicts a typical microstructure at the
end of simulation. The simulation is stopped when the activity

is very low or a predetermined number of MCS steps are
performed.

  (a)

(b)

                                 (c)



                  (d)

Figure 3 results of Monte Carlo simulation at (a) t = 10 MCS,
(b) t = 1000 MCS, (c) t = 104 MCS and (d) t = 105 MCS. (Note:
only a few grains have been selected for imaging in order to visualize the
shapes of the growing grains. Also the lines seen on the grains in figure 3(d)
are due to the discretization of the simulation domain)

     Scaling of Monte Carlo simulation with experimental time
can be carried out using various methods discussed in detail
elsewhere [9]. The kinetics can be verified by the inspection
of the plots of the average grain size against time, t (MCS).

Nucleation Scheme

     The nucleation scheme being used in this work to introduce
nuclei in the microstructure is outlined in Figure 4.

Figure 4: Algorithm for choosing a site for nucleation.

The orientation of these nuclei can either be random or the
scheme depicted in figure 5 can be used.

Figure 5: Algorithm for assigning orientation to the nucleus.

     The algorithm in Fig. 4 is explained as follows. Assume a site is
chosen in the microstructure and the orientation around this site is
computed. Assume that the dominant texture around the site is
cube. Now the probability of that a new nucleus being next to cube
texture is computed e.g. 0.10. Random number between 0 and 1 is
then generated. If this random number is less than 0.10 then the
move to put the new nucleus at the chosen site is accepted.
Otherwise another site is picked from the microstructure and steps
2 through 6 from Figure 4 are repeated.
     Similarly to choose the orientation for a nucleus, algorithm as
shown in Fig. 5 may be employed. First the texture around the
nucleus is determined, e.g. cube. Choose a random orientation for
this nucleus, e.g. Goss. Then the probability of the nucleus having
Goss texture sitting next to a cube texture is determined according
to an appropriate rule, e.g. 0.05. Now generate a random number.
If this random number is less than 0.05 the move to use Goss as
the texture for the nucleus is accepted, else steps 1 through 5 in
Figure 5 are repeated.
     The microstructure used in the simulations was similar to the
one depicted in Figure 2, having pancake shaped grains with the
aspect ratio for the semi-axes being 1:1:0.2. A substantial fraction
of the deformation texture did not correspond to one of the
standard texture components commonly used for texture analysis
in FCC metals.  For the purposes of this paper, this part of the
texture is referred to as the ‘undefined components’ whose center
of gravity is approximately (90, 0, 15) and (35, 0, 5) in Euler
angles .  The dependence of microstructural evolution on
probability of insertion of nuclei next to the “undefined” texture is
investigated in the simulations. Three independent simulations
were carried out by changing the probability, P, of insertion of
nuclei next to the “undefined” texture. In these simulations the
total volume fraction of nuclei is held constant at 0.02. Each
nucleus inserted in the microstructure consists of 3 voxels. At the
start of the simulations the number of grains in the system is
approximately 6700. Only the simulation results up to the point
where the number of grains in the system is more that 50 need to
be considered from a statistically perspective. In the three
simulations discussed, the probability P , discussed earlier, is
varied from 0 to 0.2 to 0.5.

Results
     Table 1 shows the fractions of the various texture components
at the start of simulations (including nuclei). See a standard text on
texture for definitions of the components, e.g. [Kocks, U.F., C.
Tomé, and H.-R. Wenk, eds. Texture and Anisotropy. 1998,
Cambridge University Press, Cambridge, UK.]. It can be seen that
the values for the volume fractions of the texture components are
comparable across the table. For example, the volume fraction of
the cube component is almost same in all the three simulation runs.

Table 1 Fractions of the various texture components at the start of
simulation.

Probability Cube Brass Goss Dilla-
more

Coppe
r

S Cube
Rotate

d
0 0.024 0.065 0.045 0.025 0.049 0.285 0.048

20 0.025 0.064 0.043 0.025 0.048 0.294 0.047

50 0.025 0.063 0.042 0,026 0.047 0.298 0.046

1) Select a site at random
2) Read its orientation information, x.
3) Get the probability of a new nucleus

forming next to this texture P(x).
4) Generate a random number R.
5) If R<P(x) insert nucleus at the site.
6) Else reject
7) Keep doing this till we reach the volume

fraction, predefined.

1) Choose an orientation at random, x1.
2) Find probability of having a nucleus with

texture x1 next to grain with texture x,
P(x1,x).

3) Generate a random number R1
4) If R1<P(x1,x) accept this as the nucleus

texture.
5) Else reject.
6) Do this until accepted



     Figure 6 shows a plot of the number of grains in the
simulations as a function of time in units of MCS. It can be
seen that the evolution, in all the three cases, in terms of
number of grains is very similar. With the number of grains at
the start of the simulations was about 6700 grains and at the
end each of them had between 100 and 50 grains. Also a peak
and turn-around 1000 MCS, Fig. 6 is the point at which the
recrystallization is complete and at which grain growth starts.
The results of these three simulations are presented in Figures
7, 8 and 9.
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Figure 6: Plot of number grains against time (MCS).

     The figure 7 shows the evolution of the various texture
components for the value P 0. It can be seen that the
simulation starts with a strong S component. At the end of the
simulation none of the standard texture component dominates
but the volume fraction of cube component is the highest at
0.05.
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Figure 7: Evolution of the various components as a function of
time when probability, P, is 0.

     Figure 8 shows the evolution of the various texture
components at probability at 0.20. At the end of the

simulations the percentage of cube is a slightly higher at 0.084.
     Figure 9 shows similar plot for P = 0.50. Towards the end of
the simulations the cube texture becomes the dominant component.
The value for the cube component is the highest at 0.243.
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Figure 8: Evolution of the various components as a function of
time when probability, P, is 0.20.
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Figure 9: Evolution of the various components as a function of
time when probability, P, is 0.5.

Table 2. Change in the volume fraction of cube as we change the
probability of nuclei occurring next to the “undefined” texture

Conclusions and Future work

     Preliminary results indicate that nucleation scheme has a strong
impact on the evolution of microstructure (Table 2). There is a
clear indication that the change in the volume fraction of cube at
the end of simulations with different starting conditions depends
on the probability rule. Further simulations are planned to
investigate the effects of other input parameters on microstructure
evolution like relative volume fraction of other components. Also

Probability(P) % Volume fraction of cube
0 0.05
20 0.085
50 0.243



planned are simulations for recrystallization and calibration of
grain size distributions and kinetics against the experimental
data.
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